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In nonextensive statistical mechanics, two kinds of definitions have been considered for expectation value of
a physical quantity: one is the ordinary definition and the other is the normalizedq-expectation value employ-
ing the escort distribution. Since both of them lead to the maximum-Tsallis-entropy distributions of a similar
type, it is of crucial importance to determine which the correct physical one is. A point is that the definition of
expectation value is indivisibly connected to the form of generalized relative entropy. Studying the properties
of the relative entropies associated with these two definitions, it is shown how the use of the escort distribution
is essential. In particular, the Shore-Johnson theorem for consistent minimum cross-entropysi.e., relative-
entropyd principle is found to select the formalism with the normalizedq-expectation value and to exclude the
possibility of using the ordinary expectation value from nonextensive statistical mechanics.
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I. INTRODUCTION

Nonextensive statistical mechanicsf1–4g pioneered by
Tsallis f5g offers a consistent theoretical framework for the
studies of complex systems in their nonequilibrium station-
ary states, systems withsmultidfractal and self-similar struc-
tures, long-range interacting systems, anomalous diffusion
phenomena, and so on. The worked examples are dynamical
systems at the edge of chaosf6–9g, lattice Boltzmann models
f10g, magnetism of colossal magnetoresistance manganites
f11g, high-energy processesf12–16g, cosmic raysf17g, cellu-
lar aggregatesf18g, Lévy flights f19,20g, semiclassical dy-
namics in optical latticesf21g, astrophysics and self-
gravitating systemsf22,23g, econophysical problemsf24,25g,
kinetics of charged particlesf26g, Internet trafficf27g, earth-
quakesf28,29g, and complex networksf30–32g.

In spite of these successes, still there remain some funda-
mental questions to be answered in the theory. One of them,
which is of extreme importance, is concerned with the defi-
nition of expectation value. The frequently employed defini-
tion in nonextensive statistical mechanics is the normalized
q-expectation valuef33g, which is given by

Usnord = kHlq = o
i

Pi«i , s1d

Pi =
spidq

o j
spjdq

, s2d

where Pi is termed the escort distributionf34g associated
with the basic distributionpi andH denotes a physical ran-
dom variablese.g., the system energyd with its ith value«i.
The indexq is taken to be positive. However, in the litera-
ture, there is an opinion that the ordinary expectation value

Usordd = kHl = o
i

pi«i s3d

should be used also in nonextensive statistical mechanics. In
Ref. f35g, it has been shown that, for a class of power-law
distributions, only the normalizedq-expectation value is con-
sistent with the method of steepest descents forsmicrodca-
nonical ensembles, but the situation remains unclear for the
other class of distributions with compact supports.

It is discussed in Ref.f36g that there exists “duality” be-
tween the formalisms with the normalizedq-expectation
value and the ordinary expectation value. Notice that such a
relationship can be realized only for the maximum entropy
distributions.

Here, we address ourselves to the problem of choice of
expectation value in nonextensive statistical mechanics. Our
procedure is to examine the properties of the generalized
relative entropies associated with the aforementioned two
kinds of definitions. We shall see how the formalism with the
normalizedq-expectation value is superior to that with the
ordinary expectation value.

The paper is organized as follows. In Sec. II, the ordinary
and normalizedq-expectation values are reexamined. An in-
teresting geometric aspect of the maximum entropy principle
is also pointed out, there. In Sec. III, two different kinds of
the generalized relative entropies associated with these defi-
nitions of expectation value are considered and their proper-
ties are studied. In Sec. IV, an axiomatic approach to the
issue is developed, and is shown to support the normalized
q-expectation value, excluding the possibility of using the
ordinary expectation value from nonextensive statistical me-
chanics. Section V is devoted to concluding remarks.

II. ORDINARY AND NORMALIZED q-EXPECTATION
VALUES

Before discussing the problem of expectation value, first
we wish to point out a geometric aspect of the maximum
entropy principle, which will be used later. The idea was*Corresponding author. Email address: suabe@sf6.so-net.ne.jp
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inspired by the work in Ref.f37g. Consider a functionalF
defined in the spaceS of probability distributions. Two op-
erations onS are of interest: one is translation and the other
is dilatation. The corresponding generators are given by

Ti =
d

dpi
, s4d

D = o
i

pi
d

dpi
, s5d

respectively, wherepi PS. Clearly, they satisfy the following
closed algebra:fTi ,Tjg=0, fTi ,Dg=Ti, fD ,Dg=0. Invariance
of the functionalF under these operations implies

TiF = 0, s6d

DF = 0. s7d

If F is an entropic functional, the solution to these equations
yields the maximum entropy distribution. A point to be no-
ticed is that the dilatation operation is constrained by the
normalization condition

o
i

pi − 1 = 0. s8d

This, in turn, determines the value of the associated
Lagrange multiplier.

Now, let us apply this method to the Tsallis entropy in-
dexed byq f5g,

Sqfpg =
1

1 − qFoi

spidq − 1G . s9d

Here and hereafter, the Boltzmann constant is set equal to
unity for the sake of simplicity.

If the constraint is imposed on the ordinary expectation
value, then the functional to be maximized is

Fsorddfp;a,bg = Sqfpg − aSo
i

pi − 1D − bSo
i

pi«i − UsorddD ,

s10d

where a and b are the Lagrange multipliers. Equations
s6d–s8d are found to give

q

1 − q
sp̃i

sordddq−1 − a − b«i = 0, s11d

a =
q

1 − q
f1 + s1 − qdS̃q

sorddg − bŨsordd, s12d

whereS̃q
sordd and Ũsordd are the values ofSq andUsordd calcu-

lated in terms of the maximum entropy distributionp̃i
sordd,

respectively. From these equations, it follows that

p̃i
sordd = f1 + s1 − qdS̃q

sorddg1/sq−1d

3F1 −
q − 1

q
b8s«i − ŨsordddG

+

1/sq−1d

, s13d

where

b8 =
b

oi
sp̃i

sordddq
, s14d

and fag+;maxh0,aj. On the other hand, if the normalized
q-expectation value is employed, the corresponding func-
tional reads

Fsnordfp;a,bg = Sqfpg − aSo
i

pi − 1D
− bFoi

spidq«i

o j
spjdq

− UsnordG . s15d

Here, we are using the same notation for the Lagrange mul-
tipliers as in Eq.s10d, but it will not cause any confusion.
The operatorD acting on the third term on the right-hand
side trivially vanishes since this term is manifestly invariant
under the dilatation. Equationss6d–s8d give rise to

q

1 − q
sp̃i

snorddq−1 − a − qb*s«i − Ũsnorddsp̃i
snorddq−1 = 0,

s16d

a =
q

1 − q
f1 + s1 − qdS̃q

snordg, s17d

where

b* =
b

oi
sp̃i

snorddq
. s18d

S̃q
snord and Ũsnord are the values ofSq andUsnord calculated in

terms of the maximum entropy distributionp̃i
snord. Equations

s16d and s17d lead to

p̃i
snord =

1

Z̃q
snord

f1 − s1 − qdb*s«i − Ũsnorddg+
1/s1−qd, s19d

Z̃q
snord = f1 + s1 − qdS̃q

snordg1/s1−qd

= o
i

f1 − s1 − qdb*s«i − Ũsnorddg+
1/s1−qd. s20d

Equationss13d and s19d are quite similar to each other, but
the signs of the exponents are opposite.

An important point is that with both of the definitions of
expectation value the following thermodynamic relations
hold:

]S̃q
sordd

]Ũsordd
= b, s21d

]S̃q
snord

]Ũsnord
= b, s22d

which may indicate that the thermodynamic Legendre-
transform structure is established in both cases. However, it
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is still an open problem in nonextensive statistical mechanics
if b is the physical inverse temperaturef38g.

It is clear that, in the limitq→1, the Tsallis entropy in Eq.
s9d tends to the Boltzmann-Gibbs-Shannon entropySfpg
=−oipi ln pi, and accordingly both of the distributions in
Eqs.s13d ands19d converge to the familiar Boltzmann-Gibbs
distribution p̃i ,exps−b«id.

III. GENERALIZED RELATIVE ENTROPIES

Relative entropy plays a fundamental role for comparing
two distributions. There exist two different kinds of the gen-
eralized relative entropies in nonextensive statistical me-
chanics. One is given byf39g

Iqfp i rg =
1

q − 1o
i

pifspidq−1 − sr idq−1g − o
i

spi − r idsr idq−1,

s23d

which is of the Bregman typef40g, and the other isf41–43g

Kqfp i rg =
1

1 − qF1 − o
i

spidqsr id1−qG , s24d

which is of the Csiszár typef44g, where r i is a reference
distributionsi.e., priord. In what follows, we shall look at the
properties of these two quantities in detail. In particular, in
Sec. III B, we shall see thatIqfpi rg and Kqfpi rg are the
relative entropies associated with the ordinary expectation
value and the normalizedq-expectation value, respectively.

A. Correspondence relation and nonnegativity

First of all, we notice that, in the limitq→1, bothIqfpi rg
andKqfpi rg tend to the Kullback-Leibler relative entropy

Hfp i rg = o
i

pi ln
pi

r i
. s25d

The following expression is often used for this quantity:

Hfp i rg = U d

dx
o

i

spidxsr id1−xU
x→1

. s26d

Kqfpi rg in Eq. s24d is obtained by replacing the differential
operator by the Jacksonq-differential operatorf45g,

Kqfp i rg = uDqo
i

spidxsr id1−xux→1, s27d

where Dqfsxd=ffsqxd− fsxdg / fxsq−1dg, which satisfies the
q-deformed Leibniz rule Dqffsxdgsxdg=fDqfsxdggsxd
+ fsxdDqfgsxdg+xsq−1dDqffsxdgDqfgsxdg and converges to
the ordinary differential in the limitq→1.

No such simple correspondence is known to exist between
Hfpi rg and Iqfpi rg. One could, however, still dare to write

Hfp i rg = UdGsxd
dx

U
x→1

, s28d

Gsxd =
1

x
o

i

fspidx − sr idxg − o
i

spi − r idsr idx−1, s29d

and accordingly

Iqfp i rg = uqDqGsxdux→1. s30d

Like Hfpi rg, Iqfpi rg and Kqfpi rg are nonnegative and
vanish if and only ifpi =r i s∀id. This can be seen as follows.
RegardingIqfpi rg, it is convenient to employ the integral
representationf39g

Iqfp i rg =
q

q − 1o
i
E

ri

pi

dsfsq−1 − sr idq−1g, s31d

from which nonnegativity follows immediately. On the other
hand,Kqfpi rg can be rewritten as

Kqfp i rg =
1

1 − q
o

i

pif1 − sr i/pid1−qg. s32d

Noticing s1−x1−qd / s1−qdù1−x for x.0 andq.0 with the
equality forx=1, Kqfpi rg is also seen to be nonnegative.

B. Free energy difference

Let us discuss the physical meanings ofIqfpi rg and
Kqfpi rg, in particular, their relevance to the definitions of
expectation value. For this purpose, we take the maximum
entropy distributions as the reference distributions. The ex-
ponents of the maximum entropy distributions in Eqs.s13d
and s19d together with the dependencies ofIqfpi rg and
Kqfpi rg on r i should be noticed.

Putting r i = p̃i
sordd in Eq. s23d, we have

Iqfp i p̃sorddg = bsFq
sordd − F̃q

sorddd, s33d

where

Fq
sordd = Usordd −

1

b
Sq, F̃q

sordd = Ũsordd −
1

b
S̃q

sordd. s34d

On the other hand, substitutingr i = p̃i
snord into Eq. s24d, we

obtain

Kqfp i p̃snordg =
b̂

oi
sp̃i

snorddq
sFq

snord − F̃q
snordd, s35d

where

b̂ = b*o
i

spidq, s36d

Fq
snord = Usnord −

1

b̂
Sq, F̃q

snord = Ũsnord −
1

b̂
S̃q

snord. s37d

Equationss33d and s35d show thatIqfpi rg and Kqfpi rg
are essentially the free energy differences and therefore are
recognized as the generalized relative entropies associated
with the ordinary expectation value and the normalized
q-expectation value, respectively. We also mention that the
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quantum mechanical counterpart ofKqfpi rg has recently
been employed to prove the second law of thermodynamics
f46g.

C. Convexity

Convexity is one of the most important properties to be
fulfilled by relative entropy. Taking the second-order deriva-
tives of Iqfpi rg with respect to the arguments, one finds that
it is convex inpi, but not in r i.

On the other hand, like the Kullback-Leibler relative en-
tropy, Kqfpi rg is seen to be jointly convexssee Ref.f47g in
the quantum mechanical cased:

KqFo
a

lapsad i o
a

lar sadG ø o
a

laKqfpsad i r sadg, s38d

where la.0 and oala=1. This property is stronger than
individual convexity inpi and r i.

D. Composability

Finally, we notice that, like the Kullback-Leibler relative
entropy,Kqfpi rg is “composable”f48g, but Iqfpi rg is not. In
fact, for factorized joint distributions of a composite
system sA,Bd, pijsA,Bd=ps1disAdps2d jsBd and r ijsA,Bd
=r s1disAdr s2d jsBd, Kqfps1dps2d i r s1dr s2dg yields

Kqfps1dps2d i r s1dr s2dg = Kqfps1d i r s1dg + Kqfps2d i r s2dg

+ sq − 1dKqfps1d i r s1dgKqfps2d i r s2dg,

s39d

whereas no such closed relation exists forIqfps1dps2d i r s1dr s2dg.
Equations39d has its origin in theq-deformed Leibniz rule
satisfied by the Jacksonq-differential operator.

IV. SHORE-JOHNSON THEOREM SUPPORTS
NORMALIZED q-EXPECTATION VALUE AND RULES

OUT ORDINARY EXPECTATION VALUE

In the preceding section, we have seen howKqfpi rg as-
sociated with the normalizedq-expectation value has the
properties, which are more favorable than those ofIqfpi rg
corresponding to the ordinary expectation value. In this sec-
tion, we discuss that the Shore-Johnson theorem for consis-
tent minimum cross-entropysrelative-entropyd principle sup-
ports Kqfpi rg and rules outIqfpi rg, leading to necessity of
using the normalizedq-expectation value in nonextensive
statistical mechanics.

About a quarter a century ago, Shore and Johnsonf49g
have proposed the axioms for minimum cross-entropysi.e.,
relative-entropyd principle. These authors have made an at-
tempt to answer to the questionwhy the correct rule of in-
ference is to minimize relative entropy, in conformity with a
vindication of Jaynes’ claim that every other rule will lead to
contradictionf50g. The axioms are composed of the follow-
ing five statementsspresented in a nonabstract mannerd:

sid Axiom I suniquenessd: If the same problem is solved

twice, then the same answer is expected to result both times.
sii d Axiom II sinvarianced: The same answer is expected

when the same problem is solved in two different coordinate
systems, in which the posteriors in the two systems should be
related by the coordinate transformation.

siii d Axiom III ssystem independenced: It should not matter
whether one accounts for independent information about in-
dependent systems separately in terms of their marginal dis-
tributions or in terms of the joint distribution.

sivd Axiom IVssubset independenced: It should not matter
whether one treats independent subsets of the states of the
systems in terms of their separate conditional distributions or
in terms of the joint distribution.

svd Axiom Vsexpansibilityd: In the absence of new infor-
mation, the priorsi.e., the reference distributiond should not
be changed.

These axioms are natural in the sense that all of them are
fulfilled by the ordinary Kullback-Leibler relative entropy in
Eq. s25d, which gives rise to the free energy difference in
Boltzmann-Gibbs statistical mechanics.

For the Tsallis entropy in Eq.s9d, the axioms and unique-
ness theorem are known in the literaturef51g. In contrast to
this fact, the above set of axioms is quite general and not
very restrictive, and therefore does not uniquely determine
the definition of the relative entropy. However, the Shore-
Johnson theoremf49g states that the relative entropyJfpi rg
with the prior r i and the posteriorpi satisfying the axioms’
I–V has the following form:

Jfp i rg = o
i

pihspi/r id, s40d

wherehsxd is some function.
At this juncture, it is crucial to recognize that the function

hsxd surely exists forKqfpi rg:

hsxd =
1

1 − q
s1 − xq−1d. s41d

On the other hand,Iqfpi rg cannot be recast to the form in
Eq. s40d. This is because, as can be seen,Iqfpi rg may violate
Axiom III.

Therefore we conclude that the Shore-Johnson theorem
supports the normalizedq-expectation value and excludes
the possibility of using the ordinary expectation value from
nonextensive statistical mechanics.

V. CONCLUDING REMARKS

We have discussed two kinds of definitions of expectation
value in nonextensive statistical mechanics, that is, the ordi-
nary expectation value and the normalizedq-expectation
value. To determine which is the correct definition, we have
studied the corresponding generalized relative entropies. It
was found that the generalized relative entropy associated
with the normalizedq-expectation value has the properties,
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which are superior to those associated with the ordinary ex-
pectation value. More decisively, the Shore-Johnson theorem
is shown to select the formalism with the normalized
q-expectation value and to exclude the possibility of using
the ordinary expectation value from nonextensive statistical
mechanics.
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