PHYSICAL REVIEW E 71, 016139(2005

Necessity ofg-expectation value in nonextensive statistical mechanics
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In nonextensive statistical mechanics, two kinds of definitions have been considered for expectation value of
a physical quantity: one is the ordinary definition and the other is the normajirggectation value employ-
ing the escort distribution. Since both of them lead to the maximum-Tsallis-entropy distributions of a similar
type, it is of crucial importance to determine which the correct physical one is. A point is that the definition of
expectation value is indivisibly connected to the form of generalized relative entropy. Studying the properties
of the relative entropies associated with these two definitions, it is shown how the use of the escort distribution
is essential. In particular, the Shore-Johnson theorem for consistent minimum cross-én&oplative-
entropy principle is found to select the formalism with the normalizpexpectation value and to exclude the
possibility of using the ordinary expectation value from nonextensive statistical mechanics.
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. INTRODUCTION U =(H)= pe, (3)
I

Nonextensive statistical mechani€$—4| pioneered by
Tsallis [5] offers a consistent theoretical framework for the should be used also in nonextensive statistical mechanics. In
studies of complex systems in their nonequilibrium station-Ref. [35], it has been shown that, for a class of power-law
ary states, systems witlmulti)fractal and self-similar struc- distributions, only the normalizegtexpectation value is con-
tures, long-range interacting systems, anomalous diffusiosistent with the method of steepest descents(ifwicro)ca-
phenomena, and so on. The worked examples are dynamicabnical ensembles, but the situation remains unclear for the
systems at the edge of chd6s-9], lattice Boltzmann models other class of distributions with compact supports.
[10], magnetism of colossal magnetoresistance manganites It is discussed in Ref.36] that there exists “duality” be-
[11], high-energy process¢$2-16, cosmic rayg17], cellu- tween the formalisms with the normalizegtexpectation
lar aggregate$18], Lévy flights [19,20], semiclassical dy- value and the ordinary expectation value. Notice that such a
namics in optical lattices[21], astrophysics and self- relationship can be realized only for the maximum entropy
gravitating systemf22,23, econophysical problenjg4,25,  distributions.
kinetics of charged particld®6], Internet traffic[27], earth- Here, we address ourselves to the problem of choice of
quakeq 28,29, and complex networkg30-32. expectation value in nonextensive statistical mechanics. Our
In spite of these successes, still there remain some fund@rocedure is to examine the properties of the generalized
mental questions to be answered in the theory. One of themelative entropies associated with the aforementioned two
which is of extreme importance, is concerned with the defikinds of definitions. We shall see how the formalism with the
nition of expectation value. The frequently employed defini-normalizedg-expectation value is superior to that with the
tion in nonextensive statistical mechanics is the normalizedrdinary expectation value.

g-expectation valu¢33], which is given by The paper is organized as follows. In Sec. Il, the ordinary
and normalized)-expectation values are reexamined. An in-
ynon = (Hyq= S P, (1) teresting geometric aspect of the maximum entropy principle
i

is also pointed out, there. In Sec. lll, two different kinds of
the generalized relative entropies associated with these defi-
nitions of expectation value are considered and their proper-
() ties are studied. In Sec. IV, an axiomatic approach to the
i~ D (p_)q' 2 issue is developed, and is s_hown to support the no_rmalized
i g-expectation value, excluding the possibility of using the
ordinary expectation value from nonextensive statistical me-
where P; is termed the escort distributiof84] associated chanics. Section V is devoted to concluding remarks.
with the basic distributionp; andH denotes a physical ran-
dom variable(e.g., the system energwith its ith valuee;.
The indexq is taken to be positive. However, in the litera- !l ORDINARY AND NORMALIZED =~ g-EXPECTATION
ture, there is an opinion that the ordinary expectation value VALUES

Before discussing the problem of expectation value, first
we wish to point out a geometric aspect of the maximum
*Corresponding author. Email address: suabe@sf6.so0-net.ne.jp entropy principle, which will be used later. The idea was
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inspired by the work in Ref{37]. Consider a functionad
defined in the spack of probability distributions. Two op-

erations on®, are of interest: one is translation and the other

is dilatation. The corresponding generators are given by

)
Tiz_, 4
o, (4)
1)
D= i, 5
zi:pépi ®

respectively, wherg; € X.. Clearly, they satisfy the following
closed algebrdT;, T;]=0, [T;,D]=T;, [D,D]=0. Invariance
of the functional® under these operations implies

TP=0, (6)

D® =0. (7)

If ® is an entropic functional, the solution to these equations

yields the maximum entropy distribution. A point to be no-

ticed is that the dilatation operation is constrained by the

normalization condition

2 p-1=0. (8)

This,
Lagrange multiplier.

Now, let us apply this method to the Tsallis entropy in-

dexed byq [5],
1

S 1—_q[E (p)7- 1] . )

in turn, determines the value of the associated
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B
B = ,
>, @)

and[a].=maxX0,a}. On the other hand, if the normalized
g-expectation value is employed, the corresponding func-
tional reads

D" p;a, 8] = Sfp] - a(E pi- 1)

(14)

Zi (i) %;
EJ- (pj)q

Here, we are using the same notation for the Lagrange mul-
tipliers as in Eq.(10), but it will not cause any confusion.
The operatoD acting on the third term on the right-hand
side trivially vanishes since this term is manifestly invariant
under the dilatation. Equatiori6)—(8) give rise to

— Yoy (15)

Lo @ g (e DO E 0,

(16)
q “=(non
a:l—_q[1+(1—CI)5<q 1, (17
where
. B
= (18
2, @)

S and U™ are the values of, and U™ calculated in

Here and hereafter, the Boltzmann constant is set equal @,ms of the maximum entropy distributicﬁﬁ”"” Equations
Al

unity for the sake of simplicity.

(16) and(17) lead to

If the constraint is imposed on the ordinary expectation

value, then the functional to be maximized is
®©9[p;a,B]=Sp] - “(2 pi— 1) - B(E piei — U(O"’)>,
! i

(10)
where a and B8 are the Lagrange multipliers. Equations
(6)—(8) are found to give

L (ord) q-1_ . _ =
T-gP )T mas e =0, (1)

a= 11_(1[1 +(1-9F9- 009, (12
whereS°? and U are the values 0§, and U°? calcu-
lated in terms of the maximum entropy distributi@‘?rd),
respectively. From these equations, it follows that

'-F')i(ord) =[1+(1- q)'élord)]l/(q—l)
_ 1 _ 1/(q_1)
x|1- qT,B’(si -yl (13

+

where

1 N ~ _
B = —[1-(1-g)B (- UM™Y (19)
Z(nor)
q
‘Z'!(lnor) — [1 + (1 _ q)*é(qnor)]ll(l—q)
=2 [1-(1-q)B (5 - UM M9 (20)
i

Equations(13) and (19) are quite similar to each other, but
the signs of the exponents are opposite.

An important point is that with both of the definitions of
expectation value the following thermodynamic relations
hold:

ﬁ~ ord)

= 21
gyrd -
(9~ nor
o—— (22)
r7U(nor)

which may indicate that the thermodynamic Legendre-
transform structure is established in both cases. However, it
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is still an open problem in nonextensive statistical mechanics 1 o

if 8 is the physical inverse temperaty@s]. G(x) = ;2 [(p)* = (r)*] - 2 (P =) (29
It is clear that, in the limig— 1, the Tsallis entropy in Eq. : :

(9) tends to the Boltzmann-Gibbs-Shannon entrd@y] and accordingly

=-2;p; In p;, and accordingly both of the distributions in

Egs.(13) and(19) converge to the familiar Boltzmann-Gibbs llplT]= aDG(X)x-.1. (30)
distributionp; ~ exp(—Bs;). Like H[plir], Iplr] and K [plir] are nonnegative and
vanish if and only ifp,=r; ((Ji). This can be seen as follows.
Ill. GENERALIZED RELATIVE ENTROPIES Regardingly[plir], it is convenient to employ the integral

i __representatiof39]
Relative entropy plays a fundamental role for comparing

two distributions. There exist two different kinds of the gen- . q Pi 1 -1
eralized relative entropies in nonextensive statistical me- l(plr]=— 12 dg{s™ = (r) 4], (31
: S q i Jr,
chanics. One is given bj39] '
from which nonnegativity follows immediately. On the other

I plr]= le (P9t = (r,) 1] -3 (pi = 1)), hand,K[plir] can be rewritten as
q-1 i

1 _

(23 Kolplir]= l_—q2 pilL = (ri/p)*]. (32
which is of the Bregman typg40], and the other i$41-43 Noticing (1-x-9)/(1-g) = 1x for x>0 andg> 0 with the
1 . equality forx=1, K [plir] is also seen to be nonnegative.
Klpllr]= ﬁ[l -3 (p)r) Q], (24)

' B. Free energy difference
vvhic_h is_ of _the C§iszér typ@44], wherer, is a reference Let us discuss the physical meanings Igfpiir] and
distribution(i.e., priop. In what follows, we shall look at the Kqplir], in particular, their relevance to the definitions of
properties of these two quantities in detail. In particular, '”expectation value. For this purpose, we take the maximum
Sec.. B, we 'shall see thag[p_\lr] and Kq[_pllr] are the .entropy distributions as the reference distributions. The ex-
relative entropies associated with the ordinary expecta’uor&Onents of the maximum entropy distributions in EGES)
value and the normalizeg-expectation value, respectively. 5.4 (19) together with the dependencies bffplir] and

Kq[pllir] onr; should be noticed.

A. Correspondence relation and nonnegativity Puttingri:ﬁi(ord) in Eq. (23), we have
First of all, we notice that, in the limig— 1, bothly[plir] ~(0rd — o (ord) _ (ord)
andKy[plir] tend to the Kullback-Leibler relative entropy L[PIP™]=B(Fg™ —Fg™), (33)
where
pi
Hlpllr]= iIn—. 25
[p ] 2 Pi r ( ) Féord) — U(ord) _ ’%Sq, Egord) - D(ord) _ l%‘élord)_ (34)

The following expression is often used for this quantity: 3
On the other hand, substitutimg=p"*” into Eq.(24), we

Hpi= S| . e O
[ x—1 p
~=(non7 — B (non _ =(non
Kq[pllir] in Eq. (24) is obtained by replacing the differential Kol = D (bi(nor))q(Fq Fa), (35)
operator by the Jacksapdifferential operatof45], !
where
KdpliT]1= Dg (p) (1) ¥, (27) .
i B=B2 (p)% (36)
I

where Dqf(x)=[f(gx) - f(x)]/[x(q-1)], which satisfies the
g-deformed  Leibniz  rule Dg[f(x)g(x)]=[Dgf(x)]g(x) 1 _ _ 1~
+f(X)Dg[g(x)]+Xx(q- 1D [f(x)]D[g(x)] and converges to Fnon =y — =g, For=ynen - =gr (37)
the ordinary differential in the limig— 1. B B

No such simple correspondence is known to exist between Equations(33) and (35) show thatl [plir] and K[plir]

Hlplr] andl [pilr]. One could, however, still dare to write are essentially the free energy differences and therefore are

recognized as the generalized relative entropies associated
dG(x) i ) ; )

Hlplir]= —— , (28) with the ordinary expectation value and the normalized
dx |y.1 g-expectation value, respectively. We also mention that the
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quantum mechanical counterpart Ef[plr] has recently

PHYSICAL REVIEW E71, 016139(2009

twice, then the same answer is expected to result both times.

been employed to prove the second law of thermodynamics (ii) Axiom Il (invariancg: The same answer is expected

[46].

C. Convexity

when the same problem is solved in two different coordinate
systems, in which the posteriors in the two systems should be
related by the coordinate transformation.

(iii ) Axiom Il (system independencdt should not matter

Convexity is one of the most important properties to bewhether one accounts for independent information about in-

fulfilled by relative entropy. Taking the second-order deriva-dependent systems separately in terms of their marginal dis-
tives of I[plir] with respect to the arguments, one finds thattributions or in terms of the joint distribution.

it is convex inp;, butnotin r;.

On the other hand, like the Kullback-Leibler relative en-

tropy, K[plir] is seen to be jointly convetsee Ref[47] in
the quantum mechanical case

Kq E )\ap(a) l E )\ar(a) = E )\aKq[p(a) [ r(a)]v (38)
a a a

where A\,>0 and 2 \,=1. This property is stronger than
individual convexity inp; andr;.

D. Composability
Finally, we notice that, like the Kullback-Leibler relative
entropy,K[plir] is “composable’48], butl[plir] is not. In
fact, for factorized joint distributions of a composite
system (A,B), p;j(A,B)=p)i(A)pw);B) and r;(A,B)
=1 1)i(Ar(2)i(B), KPP llr @ 2] yields

KPP T (1)f 2] = Kol Py 117 (1)) + K[ Py 17 2)]

+(g- DKy[pa I ry]K[pe2) 7 (2],
(39

whereas no such closed relation existslfpp)p) It 1) 2)]-
Equation(39) has its origin in theg-deformed Leibniz rule
satisfied by the Jacksapdifferential operator.

IV. SHORE-JOHNSON THEOREM SUPPORTS
NORMALIZED g-EXPECTATION VALUE AND RULES
OUT ORDINARY EXPECTATION VALUE

In the preceding section, we have seen hGyplir] as-
sociated with the normalized-expectation value has the
properties, which are more favorable than those  fblir]

(iv) Axiom IV (subset independencét should not matter
whether one treats independent subsets of the states of the
systems in terms of their separate conditional distributions or
in terms of the joint distribution.

(v) Axiom V(expansibility: In the absence of new infor-
mation, the prior(i.e., the reference distributiprshould not
be changed.

These axioms are natural in the sense that all of them are
fulfilled by the ordinary Kullback-Leibler relative entropy in
Eqg. (25), which gives rise to the free energy difference in
Boltzmann-Gibbs statistical mechanics.

For the Tsallis entropy in Eq9), the axioms and unique-
ness theorem are known in the literat(iBd]. In contrast to
this fact, the above set of axioms is quite general and not
very restrictive, and therefore does not uniquely determine
the definition of the relative entropy. However, the Shore-
Johnson theorerfd9] states that the relative entropgjplir]
with the priorr; and the posteriop; satisfying the axioms’
I-V has the following form:

Jplrl=2 ph(pir), (40)

whereh(x) is some function.
At this juncture, it is crucial to recognize that the function
h(x) surely exists fol[plir]:

h(x) = 1—fq(1 -xa1), (41

On the other hand,[plir] cannot be recast to the form in
Eq. (40). This is because, as can be sdgfplir] may violate
Axiom .

corresponding to the ordinary expectation value. In this sec- Therefore we conclude that the Shore-Johnson theorem
tion, we discuss that the Shore-Johnson theorem for consigypports the normalized-expectation value and excludes

tent minimum cross-entroplyelative-entropy principle sup-
portsKy[plir] and rules outy[plir], leading to necessity of
using the normalized)-expectation value in nonextensive
statistical mechanics.

About a quarter a century ago, Shore and Johrig&h
have proposed the axioms for minimum cross-entromy,

relative-entropy principle. These authors have made an at-

tempt to answer to the questiavhy the correct rule of in-

the possibility of using the ordinary expectation value from
nonextensive statistical mechanics.
V. CONCLUDING REMARKS

We have discussed two kinds of definitions of expectation
value in nonextensive statistical mechanics, that is, the ordi-

ference is to minimize relative entropy, in conformity with anary expectation value and the normalizgeexpectation
vindication of Jaynes’ claim that every other rule will lead to value. To determine which is the correct definition, we have

contradiction[50]. The axioms are composed of the follow-
ing five statementgpresented in a nonabstract manner
(i) Axiom | (uniquenesk If the same problem is solved

studied the corresponding generalized relative entropies. It
was found that the generalized relative entropy associated
with the normalizedy-expectation value has the properties,
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